
I M P A C T  C O M P R E S S I O N  O F  P I E Z O C E B A M I C S  
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We investigated the dynamic compress ib i l i ty  of a p iezoceramic  composed of lead z i rconate-  
titanate (LCT) and its depolarizat ion by shock waves over  the p r e s s u r e  range 100-500 kbar. 
We also observed the changes that pe r s i s t ed  in the specimens after  brief  compress ion  at 
p r e s s u r e s  of 350 and 500 kbar.  The dependence of the p iezocur ren t  on t ime was used to 
calculate the dielectr ic  permeabi l i ty  and conductivity of the ce ramic  beyond the shock-wave 
front over  the p r e s s u r e  range investigated. This ar t ic le  d iscusses  the possibi l i ty of a phase 
t ransi t ion to the pa rae lec t r i c  phase in LCT during compress ion  by a shock wave. 

In addition to the r e s e a r c h  on polar izat ion of ionic c rys ta l s  and other die lectr ics  in shock waves [1], 
studies have now been made o fp i ezoce ramics  under dynamic conditions [2-7]. 

Detailed studies have been made of a p iezoceramic  based on lead zi rconate- t i tanate  (LZT or PZT), 
PZT 52/48, PZT 95/5, bar ium titanate, and cer ta in  other metals.* Dynamic studies in the low-pressure  
regionhave revealed two-wave configurations [3, 5]. The amplitude of the f i rs t  wave amounts to 20-40 kbar 
and, as noted in the l i tera ture  [5], depends to a mater ia l  extent on the initial specimen density. This is r e -  
lated to the nature of the p roces s  involved in development of two-wave configurations,  which are  due to the 
influence of strength.  

The depolarizat ion of PCT 52/48 p iezoceramic  has been investigated [3], and it has been shown that 
the dependence of the e lec t r ic  charge l iberated when a shock wave passes  ac ros s  the specimen on the p r e s -  
sure has a complex form.  Study of the p iezocur ren t  as a function of time at small  shock-wave intensities 
(up to about 25 kbar) [6, 7] led to the conclusion that the conductivity of the impac t - compressed  ce ramic  
becomes substantial  at re la t ive ly  low p r e s s u r e s ,  amounting to about 10 -2 ~2 -I �9 em -i .  Examination of p r e -  
l iminar i ly  polar ized ce ramic  specimens after  passage of shock waves car ry ing  a p r e s su re  of up to about 
25 kbar showed that a substantial propor t ion of the res idual  polar izat ion is re ta ined in some types of c e -  
r a m i c s  [4]. 

in the presen t  investigation, we studied LCT 53/47 p iezoceramic  with the composit ion PB0.95Sr0.05 �9 
(Zr0.53. Ti0.4~)O~+ 1% Nb205. The dynamic compress ib i l i ty  was measured  by the reflect ion method [9] over  
the p r e s s u r e  range 100-470 kbar.  The p iezocur ren t  and its change as a shock wave was passed  ac ross  
the specimen were measured over the same p r e s s u r e  range.  In o rder  to establish the i r revers ib le  changes 
caused by impact compress ion ,  we conducted exper iments  in which the specimens were examined under 

�9 brief  compress ion  at p r e s s u r e s  of 350 and 500 kbar, using the method descr ibed by Dulin et al. [10]. 

The experiments  were conducted with ce ramic  specimens having a width of up to 20 mm and a thick-  
ness  l = 2-3 ram. The initial specimen density was 7.3-7.4 g / c m  3. The faces  of the specimens were covered 
with a layer  of s i lver  ~ 15 ~ thick. The polar ized ce ramic  was used in all the experiments .  The initial 
polar izat ion P0, measured  with the specimens heated to t empera tures  above the point T o = 305~ [8], amounted 
to 35 t tC/cm 2, while the dielectr ic  permeabi l i ty  (e0) was 1500. 

1. Rectangular  shock waves were  set up by BB charges ,  which were  s e p a r a t e d f r o m t h e t e s t  specimens 
by copper or aluminum screens .  The wave velocit ies U in the p iezoceramic  were measured by the e lec t ro -  

*Data on the composit ions and proper t ies  of LCT and PZT are given in the l i tera ture  [5, 8]. 
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TABLE 1 

v, km/sec 

3.49+0.06 
3.79-T-0.04 
4.44~-0.04 
4, 69-~-0.05 
5.04T_0.03 

u, km/sec p, kbar 

0.4i I i05 
0.54 t49 
0.85 278 
O.96 [ 332 
t.26 467 

T, ~ 

100 
t40 
270 
330 
540 

Number of 
measure- 
ments 

tl 
t2 
i5 
t2 
t2 

contact method [9]. The mass veloci t ies  u a n d p r e s s u r e s  
p were found f rom the measured  values of U and the 
known dynamic adiabats of the screens ;  the shock-wave 
intensities in t he  lat ter  were determined beforehand 
[11]. Table i p resen ts  the resu l t s  obtained in m e a s u r -  
ing the dynamic compress ib i l i ty  of LZT 53/47 p iezo-  
ceramic  with a densityp0 = 7.35 g/cm3; Figure  1 shows 
the same resu l t s  plotted on the coordinates p r e s s u r e  
(kbar) versus  specific volume V (cm 3" g-l) (points 1). 
At p ~ 150 kbar (Fig. 1), segments  of the adiabat were  

interpolated for P0 = 7.9 g / e m  3 (solid line) and P0 = 7.35 g / c m  3 (dash line). For  purposes  of comparison,  
this figure also gives points 2 [3], which were obtained in investigating a ce ramic  with a composition s imi lar  
to PZT 52/48. 

As can be seen f rom Fig, 1, the data for the h igh-pressure  region (N400 kbar) coincided but there 
was a d iscrepancy at p r e s s u r e s  below 200 kbar,  with a difference of about 4?0 in the specific volumes.  In 
analyzing the data  obtained, Reynolds and Seay [3] concluded that a two-wave configuration exists over  the 
p r e s s u r e  region20-230 kbar.  This phenomenon was not observed over  the p r e s s u r e  range 100-350 kbar in 
LZT 53/47 piezoceramie .  This is demonstrated by the l ineari ty of the U-u function; Table 1 gives the 
mean square deviations f rom the average for  U. All the points on the dynamic adiabat (except the point at 
p = 467 kbar) are  well described by the relat ionship U = 2.62 + 2.16 u (km/sec) .  

The discrepancy in the data on dynamic compress ibi l i ty  for the ce ramics  compared apparently r e -  
suited f rom differences in the composit ion and initial density of these mater ia ls .  

If we neglect  the the rmal  p r e s su re s ,  which are smal l  and are  est imated not to exceed 5% (the Griineisen 
constant is about 0.5), the dynamic adiabat obtained for a porous mater ia l  in the p r e s s u r e  region where 
strength defects are unimportant  should also approximately descr ibe the impact  compress ib i l i ty  of a c e r a m -  
ic with a crys ta l lographic  initial density. At p r e s s u r e s  below 150 kbar,  the dynamic adiabat for a solid 
mater ia l  can be obtained by interpolation (according to x - r a y  diffraction data, the crys ta l lographic  density 
of LZT 53/47 is 7.9 g/cm3). The dash line in Fig. 1 r ep resen t s  the interpolated adiabat for a porous ma-  
ter ia l  at room tempera tures .  

We evaluated the t empera tures  along the impact  adiabat in o rder  to determine the p r e s s u r e s  at  which 
a phase t ransi t ion f rom the f e r roe lec t r i c  to the pa rae lec t r i c  phase is possible in the ceramic  in question. 
The calculated resu l t s  are  presented in Table 1. It was assumed that the isentropic line and the impact  
adiabat coincided f rom the point V0k on the coordinates p ve r sus  V. The heat capaci ty was also assumed to 
be constant (c z = 0.16 ca l / g -  deg). 

2. Figure 2 is a schematic  diagram of the  experiments  in which the current  was measured  during the 
passage of a shock wave over LZT 53/47 p iezoceramic ;  this figure shows the specimen (1), the screen  at 
which the plane impact  wave is generated (2), the electrode (3), the metal beaker (4), the insulating sleeve 
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(5), the centering r ing (6), and the lead to the osci l lograph (7). The central  p iezoceramic  e lect rode was 
separated f rom the per iphera l  surface (retaining ring) by a gap of 0.15 ram. The rat io of the areas  of the 
retaining r ing and centra l  e lectrode was 2 in most  of the experiments .  The res i s tance  R 3 was accordingly 
half the load res i s t ance  R. The lat ter  was determined f rom the values of R 1 and R 2 and the input r es i s t ance  
of the osci l lograph (OK-17M or OK-21). The res i s t ance  R 1 was var ied  f rom 0 to 2.5 k~ and R 2 was var ied  
f rom 0.1 ~ to ~. 

In order  to prevent  e lec t r ica l  breakdown along the la tera l  surface of specimen 1, beaker 4 was filled 
with capaci tor  oil. The direct ion of the polar izat ion sector  was opposite to that of shock-wave propagation 
in a lmost  all the experiments .  

Figure 3 gives typical  osc i l lograms,  which show the manner in which the cur rent  pulse was deformed 
after  R was increased at a p r e s s u r e  of 280 kbar; the load res i s tance  was 50 (a), 400 (b), or 800 ~ (c). The 
scanning direct ion was f rom left to right.  The time scale was 5 (a) or 10 (b and c) MHz. 

The form of the cur ren t  pulse depended on the p r e s s u r e  and the external load res i s tance  and was also 
governed by the ra t io  between RC and the t ime,  which was associa ted with the conductivity and dielectr ic  
permeabi l i ty  of the mater ia l  beyond the shock-wave front. The maximum and subsequent minimum in the 
cur ren t  occur red  at the beginning of a lmost  all the osc i l lograms.  The same qualitative i(t) relat ionship 
was repor ted  by Zel 'dovich [12], who investigated the impact  polar izat ion of dielectr ics;  his phenomeno- 
logical descript ion was the same for impact  depolarization of p iezoceramics .  

The theory of impact  polar izat ion of d ie lect r ics  has been the subject of work by a number of authors 
[12-15]. The problem was solved in its most  general  fo rm by R~ M. Zaidel '  [15]. His hypothesis that a 
dielectr ic  is l inear and that the e lec t r ic  field has no effect on the state of the mater ia l  ahead of the front 
can be  applied to p iezoce ramics  at high p r e s su re s .  

The case of low shock-wave intensities (~ 10 kbar), where the change in polar izat ion ahead of thewave 
front  is large and the nonlinear effects become important ,  has been considered for ce ramics  [6, 7], but the 
appearance of volume free charges  behInd the wave front was neglected. The theory in question [6, 7] is 
therefore  inapplicable to the p r e s s u r e s  that occur  above 20 kbar,  where the increase  in the conductivity of 
the compressed  mater ia l  begins to have a noticeable effect. 

Measurement  of the cur ren t  during impact  compress ion  of a p iezoceramic  [6, 7] and observation of 
the res idual  polar izat ion after  passage  of shock waves [4] confirm that the res idua l  polar izat ion a lmost  com-  
pletely disappears  at  p r e s s u r e s  of ~ 30 kbar,  i.e., we can assume D = sE beyond the shock-wave front (where 
D is the e lec t r ica l  induction, E is the field strength,  and ~ is the dielectr ic  permeabi l i ty ,  which is presumed 
to be constant). This assumption is valid at high p r e s s u r e s  and is adopted in our subsequent discussions.  

Figure 4 shows the charge Q[~C/cm 2] moving through the c i rcui t  during passage  of the wave over the 
specimen (0.5-0.8 ~sec) as  a function of the load res i s t ance  R (~2); points 1, 2, and 3 cor respond to p r e s su re s  
p of 467, 149, and 105 kbar.  It can be seen f rom this graph that the change in the free charge on the ceramic  
electrode during the recording per iod was smal l  and did not exceed 15% of the initial cha rge  at loads ~ 1 
(at which the measurements  were made). It can therefore  be assumed that the change in polar izat ion ahead 
of the shock-wave front  was smal l  and that the e lectr ical - induct ion function D 1 = D O + e0 E is approximately 
l inear for the mater ia l  ahead of the wave front.  
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TAB LE 2 

p, kbar 

105 
149 
278 
332 
467 

z - t O - "  

4.3• 
4.6+0.4 
9.6~5 

ii 

X.lO~ ~-1, cm ' l  

4.5J=0.5 
6.6• 
22• 
40• 

I00 

Given these assumptions,  Zaidel 's  solution [15] can be used without 
any modifications to calculate e and ~ (the conductivity) inthe c o m p r e s s e d  
mater ia l .  Since the ceramic  is nonconductive in its initial state, the equa- 
tion for the cur rent  in a circuit  with a res is t ive  load is [15] 

~g 

a~ di + [ k ~ + a - - ( ' ~ - - t ) x ] i + [ k ( l - - x ) - - ( ~ - - l ) ]  ~ i d x - -  PoU 
dx J l 

0 

sU r4~)~l RCU tU 
a=s0(U_u ) , k = e o ( U _ u  ) , 7 - -  l , x=-----i-- 

Here a charac te r i zes  the change in dielectr ic  permeabil i ty,  k is proport ional  to the conductivity of 
the compressed  material ,  C is the initial capacity of the working portion of the specimen, x is the dimen- 
sionless t ime, and ), and e are  calculated with this equation from the maximum and minimum currents .  As 
has been pointed out [12], the instants at which the extremal  current  values are  reached are  governed by 
the t i m e r  (with ~ = 1)and the t ime (~ k -1) required  for appearance of volume charges  in the compressed  ma-  
ter ial ,  i .e.,  a re  direct ly  re la ted  to the quantities X and ~ we are  seeking. 

Table 2 presents  the resu l t s  obtained in calculating the dielectr ic  permeabi l i ty  ~ and conductivity k of 
the impac t - compres sed  p iezoceramic  giving the average values of e and k for 4 or  5 experiments;  the e s -  
t imate e = 11 �9 103 was obtained f rom the r i se  ra te  of the current ;  the est imate X = 0.1 was obtained f rom the 
cur rent  amplitude at T~ 10 l /U .  It can be seen f rom the data given that the conductivity of the compressed  
mater ia l  was re la t ively  large at p = 105 kbar and increased by a factor  of about 20 when the p re s su re  was 
ra i sed  to 470 kbar.  The elevated tempera ture ,  which was est imated not to exceed 550~ over the entire 
range investigated, therefore  is not sufficient to account for  the high conductivity of the impac t -compressed  
mater ia l  (the conductivity in the normal  state at these t empera tures  is ~10-4-10 -5 ~-1 . cm-t) .  The increase  
in conductivity behind the wave front is apparently due largely to the charac te r i s t i cs  of impact  compress ion  
of the porous mater ia l .  

As a check, we substituted the average  pa rame te r  values f rom Table 2 into the initial differential 
equation. Solution of this equation by the numer ica l  method yielded i(t) curves  s imi lar  to the experimental  
curve s. 

The increase  in the e r r o r  in determining ~ and X as the p r e s s u r e  was ra i sed  was due to the decreasing 
charac te r i s t ic  t ime of conductivity (which governs the position of the cur ren t  maximum) and consequently 
to the g rea te r  influence of shock-wave curvature  and other distoring fac tors  on the measurement  resul ts .  

The maximum current  was reached at x = 1 with large ~ ( > / / U ) .  In this case,  ~ can be evaluated f rom 
the cur ren t  r i se  ra te  and k f rom the cur ren t  amplitude at the end of the recording  period.  Table 2 gives 
some of the values obtained in this manner.  They are  less  p rec i se  but they still agree  with other data. 

3. Exper iments  involving observation of specimens subjected to impact compress ion  at p r e s s u r e s  of 
350 and 500 kbar were descr ibed in detail in a previous ar t ic le  [10]. P r e s s u r e  was generated in the field 
blocks enclosing the test  specimens (previously polarized) by the impacted plates propelled by explosion 
products .  The p iezoceramic  specimens can be considered to have been subjected to single compress ion,  
since the steel  and ce ramics  had a lmost  the same dynamic rigidity.  The p r e s s u r e  was rel ieved by a r a r e -  
faction wave following the shock-wave front by about 3 ~ sec. 

The specimens exhibited a mater ia l  change in density, f rom 7.35 to 7.7-7.8 g / c m  ~. X- ray  diffraction 
analysis  showed that the c rys ta l  s t ructure  and lattice constants remained unchanged (to within 0.1%). Mea- 
surement  of the res idual  polar izat ion confirmed the impact compress ion  completely depolarized the spec-  
imens and it can be assumed that the degree of depolarization by the shock wave increased with the p r e s -  
sure,  s tart ing at about 5 kbar [4]. 

4. In considering the t ransi t ion of the initial tetragonal  p iezoceramic  stage with fe r roe lec t r i c  p rop-  
er t ies  to a parae lec t r ie  phase with a cubic s t ructure ,  it must be taken into account that the Curie point 
decreases  as the p r e s s u r e  r i s e s .  Thus, for a s imilar  ce ramic  (PZT 52/48), A T c / A P ~ - - 0 . 7 ~  while 
this derivative is - 4 . 2~  for barium titanate. Even assuming that the function Tc(P) is less pronounced 
for the ceramic  investigated (LCT 53/47), the data in Table 1 show that the t ransi t ion to the parae lec t r ic  
phase along the impact adiabat should occur at p r e s s u r e s  not exceeding ~ 300 kbar.  
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Since the phase  t rans i t ion  is accompanied  by a change in compress ib i l i ty ,  a s ingular i ty  in the t rend 
of the  impact  adiabat  could be obse rved  in the phase - t r ans i t i on  region.  Var ious  t r ans fo rma t ions  a re  usual ly 
manifes ted  in inflections or  " s teps"  in the cu rves  r ep re sen t ing  the wave veloci ty  v e r s u s  the m a s s  velocity,  
which a re  l inear  (with smal l  p a r a m e t e r - v a r i a t i o n  intervals)  if the re  a r e  no abrupt  changes in the c o m p r e s -  
sibi l i ty of the ma t e r i a l  or  discontinuous changes in specif ic  volume.  As was noted above, the exper imen ta l  
data were  desc r ibed  by a l inear  U-u re la t ionship  at p r e s s u r e s  below 330 kbar  and the posit ion at  the point 
at 470 kbar  indicates  a substant ia l  i nc rease  in compress ib i l i ty .  This  r e su l t  can be r e g a r d e d  as  indicating 
that  the re  is n o  phase  t rans i t ion  during impac t  c o m p r e s s i o n  over  the p r e s s u r e  range  up to 300 kbar  but that  
a t rans i t ion  is poss ib le  at p r e s s u r e s  between 300 and 400 kbar .  

The author wishes  to thank R. M. Za ide l '  for  his helpful comments  and A. N. Shuikinfor his a s s i s t ance  
in p roces s ing  the expe r imen ta l  data .  
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